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(K grad u, nW) 1 a u 5 c, (x, y) [ ­V, (1.2)
A new second-order finite-difference algorithm for the numerical

where nW is the vector of unit outward normal to the bound-solution of diffusion problems in strongly heterogeneous and non-
ary ­V, and a and c are functions given on ­V. The algo-isotropic media is constructed. On problems with rough coefficients

or highly nonuniform grids, the new algorithm is superior to all rithm is constructed using a nontrivial generalization of
other algorithms we have compared it with. For problems with the support-operators method for solving problems where
smooth coefficients on smooth grids, the method is comparable the material properties tensor (or matrix) K may be discon-
with other second-order methods. The new algorithm is formulated

tinuous and non-diagonal and, moreover, the computa-for logically rectangular grids and is derived using the support-
tional grid may not be smooth.operators method. A key idea in deriving the method was to replace

the usual inner product of vector functions by an inner product The support-operators method constructs discrete ana-
weighted by the inverse of the material properties tensor and to logs of invariant differential operators div and grad, which
use the flux operator, defined as the material properties tensor times satisfy discrete analogs of the integral identities responsible
the gradient, rather than the gradient, as one of the basic first-order

for the conservative properties of the continuum model.operators in the support-operators method. The discrete analog of
The method was initially developed in [1] by Samarskii,the flux operator must also be the negative adjoint of the discrete

divergence, in an inner product that is a discrete analog of the Tishkin, Favorskii, and Shashkov and is fully described
continuum inner product. The resulting method is conservative and in [2].
the discrete analog of the variable coefficient Laplacian is symmetric This paper is the third of a series on the support-opera-
and negative definite on nonuniform grids. In addition, on any grid,

tors method. In the first paper [3], the support-operatorsthe discrete divergence is zero on constant vectors, the null space
method was combined with the mapping method to pro-for the gradient is the constant functions, and, when the material

properties are piecewise constant, the discrete flux operator is exact duce an algorithm for equations with general boundary
for piecewise linear functions. We compare the methods on some conditions. The resulting method was shown to be accurate
of the most difficult examples to be found in the literature. Q 1997 when both K is smooth and the problem is solved on a
Academic Press

smooth grid. In the second paper [4], the support-operators
method was extended to define a new cell-centered finite-
difference algorithm for solving time-dependent diffusion1. INTRODUCTION
equations with discontinuous diagonal K on logically rec-
tangular non-smooth grids, such as the grids associatedThe main goal of this paper is the description and investi-
with Lagrangian hydrodynamics calculations. This papergation of new finite-difference algorithms for solving the
also contains an extensive review of the literature on con-elliptic partial differential equation (PDE) or stationary
structing approximations of differential operators on non-diffusion equation
uniform grids and motivation for using the support-opera-
tors method.2div K grad u 5 f, (x, y) [ V. (1.1)

In this paper we extend the support-operators method
to the non-diagonal non-smooth tensor K and non-smoothThe solution, u 5 u(x, y), is the concentration to be solved

for (temperature in heat diffusion problems, and pressure logically rectangular grids. A key to improving the accuracy
for non-smooth K is to use the flux operator K grad, ratherin flow problems). Here V is a two-dimensional region, div

is the divergence, grad is the gradient, K 5 K(x, y) is a than the gradient operator grad, as one of the basic first-
order operators. This requires that the usual inner productsymmetric positive-definite matrix, and f 5 f (x, y) is a

given right-hand side or forcing function. The boundary of vector functions be replaced by an inner product
weighted by the inverse of the material properties tensor.conditions are general Robin (or mixed),
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The methods are linear, conservative and material disconti- tinuum problem is written in operator form to illuminate
the properties of the operators that should have analogsnuities are assumed to occur at the surfaces of the grid cells.

The methods use both the heat-flux and the temperature as in the discrete case. The main point in this section is to
introduce an inner product on vectors that is weighted byprimary variables.

In these methods, the temperature and the elements of K21 and to introduce the operator K grad rather than just
grad. In Section 3, the grid and the discretizations of scalarthe conductivity matrix K are defined at the cell centers.

We will compare two different approaches in discretizing and vector functions are given. Both nodal and surface
discretizations for fluxes are introduced, and the discretethe heat-flux. In the nodal discretization, vector quantities,

such as the heat-flux, are described by their Cartesian com- inner product for general non-diagonal K is constructed.
In Section 4, following the support-operators method,ponents defined at the nodes of the grid. When K is discon-

tinuous, this approach is not as accurate as the surface approximations for div and K grad are derived using both
the nodal and surface discretizations. Using these opera-discretization method where vector quantities are de-

scribed by their orthogonal projections into the directions tors, the finite difference scheme for div K grad is con-
structed. The theoretical properties of the discrete opera-perpendicular to the faces of the cells. The surface discreti-

zation approach is more accurate when K is discontinuous tors are summarized and it is shown that, for the surface
discretization, the null space of grad is the constant func-because, even when K is discontinuous at the interface

between the cells, the heat-flux perpendicular to the cell tions, while for the nodal discretization, the null space
also contains the spurious highest-frequency mode on aface is always continuous.

We now summarize the properties of the finite-differ- square grid.
In Subsection 4.6, we describe strategies for solving theence method using the surface discretization for heat-flux.

The discrete analog of the variable-coefficient Laplacian linear equations given by the discretizations of the variable-
coefficient Laplacian. An important point here is that thediv K grad can be decomposed as a composition of two

discrete operators: a divergence DIV, and a flux operator discrete operator for the surface discretization is not local.
However, it is the product of a local discrete operator withG p –K grad, which are the adjoints of each other. This

ensures the self-adjointness and negative definiteness of the inverse of a local operator, so the residual can still be
computed as a local operation. Iterative methods that onlythe discrete variable-coefficient Laplacian for general

grids. Moreover, on any grid, the discrete analog of div is require local operations, such as the preconditioned conju-
gate gradient method, can be used efficiently.exactly equal to zero on constant vectors, the GRAD is

equal to zero only for constant functions, and (when the In Section 5, we test and compare our algorithms on five
of the most difficult examples to be found in the literature.material properties are piecewise constant) the discrete

flux operator is exact for piecewise linear functions. On These examples verify that the surface discretization ap-
proach performs reliably on all of the examples, and therectangular grids, all the discrete operators reduce to stan-

dard finite difference approximations and when the discon- nodal discretization gives reasonable results. Additional
numerical examples can be found in [4].tinuous heat conductivity is a scalar, the algorithm pro-

duces the appropriate harmonic average heat conductivity
2. THE PROPERTIES OF THE CONTINUUM PROBLEMfor the fluxes.

Because the fluxes are the primary unknowns for the
In this section, we will develop the flux form of themethod, when this approach is used to solve (1.1), the

elliptic PDE (1.1) as a system of first-order equations andnew method has twice as many unknowns as the more
analyze the system in terms of abstract operators on inner-traditional algorithms. However, because the method is
product spaces of scalar and vector-valued functions. Thesecond-order accurate (as it is shown by numerical experi-
analysis will be for Robin (mixed) boundary conditionsments) on general logically rectangular grids, fewer grid
(1.2). The case with Dirichlet boundary conditions is apoints are needed than the commonly used first order
straightforward extension of this analysis and will not bemethods to give the same level of accuracy in the solution.
analyzed here.In our computational comparisons with many of the ex-

We introduce the space of scalar functions H with theisting methods, when the computational mesh is signifi-
inner productcantly skewed, we find that the new method is much more

accurate than the traditional finite difference and finite
(u, v)H 5 E

V
u v dV 1 R

­V
u v dS, u, v [ H, (2.1)volume methods. Also, because the discrete difference

equations are symmetric and positive definite, only half
and rewrite Eqs. (1.1), (1.2) asthe coefficients for the difference equations need be stored

and the equations can be solved with some of the most A u 5 F. (2.2)
powerful iterative methods for solving linear systems.

This paper is arranged as follows. In Section 2, the con- The operator A is given by
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A : H R H,

(2.3) DwW 5 51div wW , (x, y) [ V,

2(wW , nW), (x, y) [ ­V,
(2.10)

Au 5 52div K grad u, (x, y) [ V

(K grad u, nW) 1 a u, (x, y) [ ­V

Vu 5 50, (x, y) [ V,

a u, (x, y) [ ­V.
(2.11)

and has the properties

(Au, v)H 5 (u, Av)H , (Au, u)H . 0. (2.4) Here

The right-hand side of (2.2) has the form G : H R H; D : H R H; V : H R H. (2.12)

Using the first-order operators, system (2.6) can be rewrit-
ten in the formF 5 5f, (x, y) [ V

c, (x, y) [ ­V.
(2.5)

V u 1 D wW 5 F, wW 5 G u. (2.13)

We investigate the properties of problem (1.1), (1.2)
A crucial relation which we must retain in our discreteby writing it in terms of first-order operators in flux or

approximation ismixed form:

D 5 G*. (2.14)
div wW 5 f, (x, y) [ V,

wW 5 2K grad u, (x, y) [ V, (2.6) This is clear from the definition of operator D, the defini-
tion (2.1) for the inner product in the space H, and inte-

2(wW , nW) 1 a u 5 c, (x, y) [ ­V.
gral identity

The flux wW 5 G u 5 2K grad u has physical meaning and E
V

f div wW dV 1 E
V

(wW , grad f) dV 5 R
S

f(wW , nW) dS,is continuous across discontinuities in K, but grad u has
neither. When the matrix K is non-diagonal and discontinu- (2.15)
ous, there are advantages (and it is natural) to analyzing
the equations by considering the operator G 5 2K grad which give
directly, rather than the operator grad and matrix K sepa-
rately. (D wW , u)H 5 E

V
u div wW dV 2 R

­V
u(wW , nW) dS

To investigate (2.6), we introduce the space of vector
functions H with the inner product of two vector functions

5 2E
V

(wW , grad u) dV

(2.16)
AW , BW [ H, defined by

5 2E
V
(wW , K21 (K grad u)) dV

(AW , BW )H 5 E
V

(K21 AW , BW ) dV. (2.7)

5 (wW , G u)H .

Because the matrix K is symmetric and positive definite,
Also, it is evident that V 5 V* $ 0.so is K21 and (2.7) satisfies all the axioms of an inner

Because A 5 V 1 D ? G, the properties (2.4) followproduct. This ‘‘weighted’’ inner product is well defined
from the properties of operators V, D, and G. Note thatfor discontinuous K and naturally arises in mixed finite-
boundary conditions are included in definitions of opera-element formulations (see, for example, [5, 6]).
tors and spaces of functions in a natural way. The proper-From (2.6), it is clear that the operator A can be repre-
ties of first-order operators discussed in this section aresented in the form
preserved by the finite-difference methods derived using
the support-operators method.A 5 V 1 D · G, (2.8)

3. THE SPACES OF DISCRETE FUNCTIONS
where the operators G, D, and V have the definitions

In this section, we define our notation for a logically
rectangular grid [7], a cell-centered discretization of scalarGu 5 2K grad u, (x, y) [ V, (2.9)
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FIG. 1. (a) A logically rectangular grid and the discretization of a scalar, (b) a typical cell of a logically rectangular grid.

functions, and both nodal and face-centered discretizations C2
min h # Sj(i, j) , Sh(i, j) # C2

max h, (3.3)
of vector-valued functions.

and that there exists a constant « . 0, which does not
3.1. The Discretization of Scalar and Vector Functions depend on h, such that

The nodes of a logically rectangular grid can be indexed sin (w(i, j)
(k,l)) $ «. (3.4)

the same way as a rectangular grid with indices (i, j), 1 #
i # M, 1 # j # N (see Fig. 1a). The quadrangle defined Our notation is motivated by considering the 2-D grid
by the nodes (i, j), (i 1 1, j), (i 1 1, j 1 1), and (i, j 1 1) as a projection of a 3-D grid. This approach may seem
is called the (i, j) cell (see Fig. 1b). The area of this cell is awkward at first, but it becomes natural when put into a
denoted by VC(i, j) . The length of the side of the (i, j) cell three-dimensional setting and it clarifies how the finite-
that connects the vertices (i, j) and (i, j 1 1) is denoted difference methods generalize to 3-D.
Sj(i, j) , while the length of the side that connects the vertices In this paper we consider functions of the coordinates
(i, j) and (i 1 1, j) is denoted Sh(i, j) . The angle between x and y and extend the grid into a third dimension, z,
any two adjacent sides of cell (i, j) that meet at node when convenient. The extended 3-D mesh is constructed
(k, l) is denoted w(i, j)

k,l (the angle w(i, j)
(i11, j) is displayed in Fig. by extending a grid line of unit length into the z direction

1b). We assume, unless otherwise stated, that the cells are to form a prism with unit height and with a 2-D quadrilat-
convex. (Meshes with non-convex cells are considered in eral cell as its base (see Fig. 2a).
Subsection 3.2.2 and [4].) It is also useful to interpret the grid as the discretization

To study convergence rates, we impose some standard of a map from a curvilinear coordinate system x 5 x(j, h,
mild smoothness assumptions on the family of grids. A z), y 5 y(j, h, z), z 5 z(j, h, z), where the nodes of the
small parameter which characterizes the density of the grid are given by x(i, j,k) 5 x(ji , hj , zk), with ji 5 i Dj, and
grid is so forth, as shown in Fig. 2b. Thus increasing i corresponds

to increasing j, and so on. Using this 3-D interpretation,
the notation Sj(i, j) refers to the area of the 3-D surfaceh 5 max H 1

M 2 1
,

1
N 2 1J. (3.1)

given by the points (i, j, k), (i, j 1 1, k), (i, j, k 1 1), (i,
j 1 1, k 1 1); that is, Sj, gives the element of surface area
for a surface where j is constant, because we took theWe assume that there exist constants C(1)

max and C(1)
min , which

height of the prism equal to one. Similar results hold fordo not depend on h, such that
other sides of a 2-D cell.

C1
min h2 # VC(i, j) # C1

max h2, (3.2)
3.1.1. The Discrete Scalar Functions

The discrete analog of the scalar function u is the cell-and constants C(2)
max and C(2)

min , which do not depend on h,
such that centered discrete scalar function U(i, j) (see Fig. 1a) whose
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FIG. 2. (a) The 3-D mesh, (b) curvilinear coordinates and grid lines.

indices vary in the same range as the volume VC(i, j) . The is used for the component at the center of side Sj(i, j) , and
the notationtreatment of the boundary conditions requires the intro-

duction of the values of the scalar function on the centers
of the boundary segments (see Fig. 1a): WSh(i, j) : i 5 1, ..., M 2 1; j 5 1, ..., N (3.7)

U(0, j) , U(M, j) , j 5 1, ..., N 2 1;
(3.5) is used for the component at the center of side Sh(i, j) .

U(i,0) , U(i,N) , i 5 1, ..., M 2 1.

3.2. The Spaces of Discrete Functions
In the 3-D interpretation, scalar functions are defined in

The spaces of discrete scalar and vector functions needthe centers of the 3-D prisms and in the centers of the
inner products. For scalar functions this is straightforward,boundary surfaces. Again, because we only consider the
but for vector functions, there are two spaces: H N for the2-D case, these values can be projected to the 2-D cells,
nodal discretization, and H S for the surface discretization.and the centers of the boundary sides.
Neither inner product is simple because of the use of KThe components of K are discretized in the same way
in the inner product and, in both cases, the values K areas u. The scalar functions a and c from the boundary
not given at the same points as the vector components.conditions are discretized in the same way as u is on the

boundary.
3.2.1. The Space of Discrete Scalar Functions

3.1.2. The Discrete Vector Functions The space of discrete scalar functions is labeled HC and
has the inner productTwo possibilities are used for discretizing vector func-

tions WW 5 (WX, WY): the first uses the usual Cartesian
components WX(i, j) and WY(i, j) of the vector at the nodes (U, V)HC 5 OM21

i51
ON21

j51
U(i, j) V(i, j) VC(i, j)as shown in Fig. 3a; and the second uses the orthogonal

projections of the vector on the direction which is perpen-
dicular to the surfaces of 3-D cells at the centers of the 1 OM21

i51
U(i,0) V(i,0) Sh(i,1) 1 ON21

j51
U(N, j) V(N, j) Sj(N, j)

(3.8)
surfaces. Because the 3-D cell is a right prism, we can
interpret these components as the orthogonal projections

1 OM21

i51
U(i,N) V(i,N) Sh(i,N)on the directions which are perpendicular to the sides of

the 2-D cell, as in Fig. 3b. The notation

1 ON21

j51
U(0, j) V(0, j) Sj(1, j) .

WSj(i, j) : i 5 1, ..., M; j 5 1, ..., N 2 1 (3.6)
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FIG. 3. (a) The nodal discretization of a vector, (b) the surface discretization of a vector.

O1
k,l50

V(i, j)
(i1k, j1l) 5 1. (3.12)3.2.2. The Space of Discrete Nodal Vector Functions

The space of discrete nodal vector functions is called
H N and the inner product on this space is given by In this formula, each index (k, l) corresponds to one of
(?, ?)H N . the vertices of the (i, j) cell, and the notation for the weights

is the same as for the angles of the cell. As was shown in
[4], to obtain a first-order approximation for the gradient(AW , BW )H N 5 OM21

i51
ON21

j51
(K21 AW , BW )(i, j) VC(i, j) , (3.9)

operator, it is necessary that the weights V(i, j)
(i1k, j1l) be one-

half of the area of the triangle in the (i, j) cell, which
contains the angle at the node (i 1 k, j 1 l), divided bywhere (K21 AW , BW )ij is the approximation of the dot product
the volume of the cell VC(i, j) .of vectors K21 AW and BW in the cell. Note that K and conse-

Because the weights are positive if the cell is convex,quently K21 are defined at cell centers, but the components
we are guaranteed that the discrete analog of the variable-of the vectors are defined at the cell nodes, which compli-
coefficient Laplacian is positive-definite (see [4] for de-cates the definition of a dot product. For this type of discret-
tails). When the cell is not convex, we modify the definition,ization it is natural to assume that tensor K is given by its

Cartesian components, Kxx , Kxy 5 Kyx , Kyy , and conse-
quently

Ṽ(i, j)
(i1k, j1l) 5

uV(i,j)
(i1k, j1l)u

o1
p,q50 uV(i, j)

(i1p, j1q)u
, (3.13)

(K21 AW , BW ) 5 (K21)xx AX BX 1 (K21)xy (AX BY
(3.10)

1 AY BX) 1 (K21)yy AY BY. to give positive weights (see [4]). For convex cells, the two
definitions coincide.

For simplicity (where it is convenient), we will use the
notation KI 5 K21 for the matrix inverse of K. 3.2.3. The Space of Discrete Surface Vector Functions

We define (K21 AW , BW )(i, j) as
The space of discrete surface vector functions is called

H S and the inner product on this space is (?, ?)H S . Again,(K21 AW , BW )(i, j) 5 (KI AW , BW )(i, j)
there is the problem that the components of the vectors
are not defined at the cell centers where K is defined.5 O1

k,l50
V(i, j)

(i1k, j1l) h(KIxx)(i, j) AX(i1k, j1l)
To obtain the formula for (K21 AW , BW )i, j , let us first con-

sider a non-orthogonal basis system with axes j and h and
BX(i1k, j1l) 1 (KIxy)(i, j)

[AX(i1k, j1l) (3.11) let w be the angle between these axes. If the unit normals
to the axes are nSWj and nSWh, then the components of theBY(i1k, j1l) 1 AY(i1k, j1l) BX(i1k, j1l)]
vector WW in this basis are the orthogonal projections WSj

1 (KIyy)(i, j) AY(i1k, j1l) BY(i1k, j1l)j and WSh of WW onto the normal vectors. (See the discussion
in Chapter 2 of Knupp and Steinberg [7] for more details.)
A simple vector algebra calculation shows that if AW 5and the V(i, j)

(i1k, j1l) are weights satisfying
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FIG. 4. (a) The components of a vector in a local basis, (b) the angles w1 and w2 .

(ASj, ASh) and BW 5 (BSj, BSh), then the expression for
(KI AW , BW )(i, j) 5 O1

k,l50

V(i, j)
(i1k, j1l)

sin2(w(i, j)
(i1k, j1l))the dot product is

[T11(i, j)
(i1k, j1l) ASj(i1k, j) BSj(i1k, j)(AW , BW ) 5 [ASj BSj 1 ASh BSh

(3.14) 1 T22(i, j)
(i1k, j1l) ASh(i, j1l) BSh(i, j1l) (3.16)

1 (ASj BSh 1 ASh BSj) cos(w)]/sin2(w) .
1 (21)k1l T12(i, j)

(i1k, j1l) (ASj(i1k, j) BSh(i, j1l)

Denote by w1 and w2 the angles between the x-axis of
1 ASh(i, j1l) BSj(i1k, j))],

the Cartesian coordinate system and the first and second
axes of the local coordinate system, respectively (see Fig. where, for example,
4b). In terms of the coordinates of vectors in the local basis
system, the dot product (KI AW , BW ) is T11(i, j)

(i1k, j1l) 5 (KIxx)(i, j) cos2 ((w1)
(i, j)
(i1k, j1l))

1 2 (KIxy)(i, j) cos ((w1)
(i, j)
(i1k, j1l)) sin ((w1)

(i, j)
(i1k, j1l))(KI AW , BW ) 5 [T11 ASj BSj 1 T22 ASh BSh

(3.15) 1 (KIyy)(i, j) sin2 ((w1)
(i, j)
(i1k, j1l)).

1 T12 (ASj BSh 1 ASh BSj)]/sin2(w) ,
That is, the values of matrix elements are defined in the
cell (i, j), and the angle w1 is related to the correspondingwhere
vertex of the cell. The formulas for T12 and T22 are similar.
In general, the notation is the same as for any quantityT11 5 KIxx cos2 w1 1 2 KIxy cos w1 sinw1 1 KIyy sin2 w1 ,
related to the cell and vertex. Finally, as in (3.9), the inner

T12 5 KIxx cos w1 cosw2 product in H S is given by

1 2KIxy (cos w1 sin w2 1 sin w1 cos w2)
(AW , BW )H S 5 OM21

i51
ON21

j51
(KI AW , BW )(i, j) VC(i, j) . (3.17)

1 KIyy sin w1 sin w2 ,

3.2.4. The Formal and Natural Inner ProductsT22 5 KIxx cos2 w2 1 2KIxy cos w2 sin w2 1 KIyy sin2 w2 .

To compute the adjoint relationships, it is helpful to
introduce formal inner products, [?, ?], in the spaces ofThis formula is used to obtain the discrete inner product

in the cell, scalar and vector functions. In HC,
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[U, V]HC 5 OM21

i51
ON21

j51
U(i, j) V(i, j) 1 OM21

i51
U(i,0) V(i,0)

N AW 5 1N11 N12

N21 N222 1
AX

AY2
(3.24)

1 ON21

j51
U(M, j) V(M, j) 1 OM21

i51
U(i,N) V(i,N) (3.18)

5 1N11 AX 1 N12 AY

N21 AX 1 N22 AY2.
1 ON21

j51
U(0, j) V(0, j) ,

A comparison of the formal inner product (AW , BW )H N given
in H N, in (3.9) and the natural inner product gives

[AW , BW ]H N 5 OM
i51

ON
j51

AX(i, j) BX(i, j)

(3.19)
[ N AW , BW ]H N 5 OM

i51
ON
j51

h[(N11 AX)(i, j)

1 (N12 AY)(i, j)] BX(i, j) (3.25)
1 OM

i51
ON
j51

AY(i, j) BY(i, j) ,
1 [(N21 AX)(i, j) 1 (N22 AY)(i, j)] BY(i, j)j.

and in H S Note that all components of the operator N are diago-
nal operators,[AW , BW ]H S 5 OM

i51
ON21

j51
ASj(i, j) BSj(i, j)

(3.20)
(N11 AX)(i, j) 5 n11(i, j), AX

(i, j)
,

1 OM21

i51
ON
j51

ASh(i, j) BSh(i, j) .
(N12 AY)(i, j) 5 n12(i, j) AY(i, j) ,

(3.26)
(N21 AX)(i, j) 5 n21(i, j), AX(i, j),Then the relationships between the natural inner products

and the formal inner products are (N22 AY)(i, j) 5 n22(i, j) AY(i, j) ,

(U, V)HC 5 [ M U, V]HC , where n11(i, j) is given by the formula

(AW , BW )H N 5 [ N AW , BW ]H N , (3.21)
n11(i, j) 5 (KIxx)(i, j) V(i, j)

(i, j) 1 (KIxx)(i21, j) V(i21, j)
(i, j)(AW , BW )H S 5 [ S AW , BW ]H N ,

1 (KIxx)(i21, j21) V(i21, j21)
(i, j) 1 (KIxx)(i, j21) V(i, j21)

(i, j) .

where M, N, and S are matrices.
Formulas for these matrices can be found by direct com- Formulas for n12(i, j) , n21(i, j) , n22(i, j) are similar.

parison of the formal and natural inner products. The for- This operator is symmetric and positive-definite in the
mula for M is formal inner product:

[ N AW , BW ]H N 5 [AW , N BW ]H N , [ N AW , AW ]H N . 0. (3.27)( M U)(i, j) 5 VC(i, j) U(i, j) , i 5 1, ..., M 2 1; j 5 1, ..., N 2 1.

( M U)(i, j) 5 Sj(i, j) U(i, j) , i 5 0 and i 5 M; j 5 1, ..., N 2 1.
The operator S can be written in block form:

( M U)(i, j) 5 Sh(i, j) U(i, j), i 5 1, ..., M 2 1; j 5 0 and j 5 N.
(3.22)

S AW 5 1S11 S12

S21 S222 1
ASj

ASh2
(3.28)

From these formulas, we see that the matrix M is a sym-
metric positive-definite operator in the formal inner
product:

5 1S11 ASj 1 S12 ASh

S21 ASj 1 S22 ASh2.

[ M U, V]HC 5 [U, M V]HC , [ M U, U]HC . 0. (3.23)

The operator N can be written in block form: The operators S11 and S22 are diagonal and the stencils for
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operator, we call it the prime operator. Because the discrete
approximations for the flux operator and Laplacian are
derived from the prime operator, they are called derived
operators.

4.1. The Prime Operator

A natural conservative invariant definition of the diver-
gence operator is

FIG. 5. The stencils for the operators S12 and S21 .
div wW 5 lim

VR0

1
V
R

V
(wW , nW) dV. (4.1)

This identity is used in [2] to derive a discrete analogthe operators S12 and S21 are shown in Fig. 5. A comparison
of the natural inner product (AW , BW )H S and the formal in- DIV of the divergence div, for both the nodal and surface

discretizations.ner product

4.1.1. The Nodal Discretization for Vectors
[ S AW , BW ]H S 5 OM

i51
ON21

j51
[(S11 ASj)(i, j) 1 (S12 ASh)(i, j)] BSj(i, j)

Here the cell discretization of scalar functions and the
nodal discretization of vector functions are used. In the
interior of the region, the prime operator D 5 DIV, which1 OM21

i51
ON
j51

[(S21 ASj)(i, j) (3.29)
is the discrete analog of the divergence, is given by

1 (S22 ASh)(i, j)] BSh(i, j) ,

( D WW )(i, j) 5
0.5

VC(i, j)gives

h[(WX(i, j) 2 WX(i11, j11)) (y(i11, j) 2 y(i, j11))

(S11 ASj)(i, j) 5 SO1
k,l50

V(i2k, j)
(i, j1l) T11(i2k, j)

(i, j1l)

sin2(w(i2k, j)
(i, j1l) ) DASj(i, j) , 2(WX(i11, j) 2 WX(i, j11)) (y(i, j) 2 y(i11, j11))] (4.2)

2 [(WY(i, j) 2 WY(i11, j11)) (x(i11, j) 2 x(i, j11))
(S12 ASh)(i, j) 5 O1

k,l50
(21)k1l

V(i2k, j)
(i, j1l) T12(i2k, j)

(i, j1l)

sin2(w(i2k, j)
(i, j1l) )

ASh(i2k, j1l) .
2 (WY(i11, j) 2 WY(i, j11)) (x(i, j) 2 x(i11, j11))]j,

(3.30)
while on the boundary, D gives an approximation of the
normal component of the vector. For example, on theFormulas for operators S21 and S22 are similar.
‘‘bottom boundary’’ where j 5 1 and i 5 1, ..., M 2 1, aWe remark that these formulas are valid only for i 5
unit normal vector is2, ..., M 2 2; j 5 2, ..., N 2 2, but it is easy to show that

if fictitious nodes are introduced for i 5 0, i 5 M 1 1,
j 5 0, and j 5 N 1 1, whose coordinates are the same as Sy(i11,1) 2 y(i,1)

lj(i,1)
, 2

x(i11,1) 2 x(i,1)

lj(i,1)
D, (4.3)for the corresponding real nodes, then the formulas are

valid for all i and j. If all the weights Vp,q
(i, j) are positive,

then the operator S is symmetric and positive-definite in where, because the problem is two dimensional, lj 5 Sh
the formal inner product: and lh 5 Sj are the lengths of the edges of the cell, and

then D is given by
[ S AW , BW ]H S 5 [AW , S BW ]H S , [ S AW , AW ]H S . 0. (3.31)

4. THE FINITE-DIFFERENCE METHOD (D WW )(i,0) 5 2SW X(i,1) 1 W X(i11,1)

2
y(i11,1) 2 y(i,1)

lj(i,1)
(4.4)

We now use the support-operators method to derive
approximation to the divergence, flux operator, and vari- 2

WY(i,1) 1 WY(i11,1)

2
x(i11,1) 2 x(i,1)

lj(i,1)
D.

able coefficient Laplacian. We first derive a discrete ap-
proximation to the divergence, and then use this discrete

4.1.2. The Surface Discretization for Vectors
divergence to derive the approximations to the flux opera-
tor and Laplacian using discrete analogs of the integral For a cell discretization for scalar functions and a surface

discretization for vector functions, the prime operator (dis-identities. Because of the principle role of the divergence
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crete divergence 5 D 5 DIV) is defined in the interior of Because S is banded, S 21 is likely to be full (unless S

is diagonal). Hence G is full and has a non-local stencil.the region by
This is not a serious problem, because we do not need to
explicitly form G. The discrete fluxes are

(D WW )(i, j) 5
1

VC(i, j)
WW 5 G U 5 S 21 D † M U, (4.12)

h(WSj(i11, j) Sj(i11, j) 2 WSj(i, j) Sj(i, j) (4.5)

and if the operator S is applied to both sides of this equa-1 (WSh(i, j11) Sh(i, j11) 2 WSh(i, j) Sh(i, j))j,
tion, then

while on the boundary, D gives an approximation of the
S WW 5 D † M U. (4.13)normal component of a vector,

The operators on both sides of this equation have local
(D WW )(i,0) 5 2WSh(i,1) , i 5 1, ..., M 2 1,

(4.6) stencils.
These equations are similar to the finite element and(D WW )(i,N) 5 1WSh(i,N) , i 5 1, ..., M 2 1,

compact finite difference methods that can be expressed
in the form (4.13) with local stencils (see, for example,and similar formulas on other parts of the boundary.
[8–10]).

To find the fluxes for a given temperature, from (4.13)4.2. The Derived Operator
we must solve a system of linear equations. The discrete

The derived operator G is the discrete analog of the flux operator S is symmetric positive-definite and has five non-
operator, and is defined by G 5 D *. Here the adjoint is zero elements in each row (see (3.30) and Fig. 5). In Subsec-
taken in the natural inner product. For the surface discreti- tion 4.6, we discuss possible solution approaches.
zation on arbitrary grids, it is not possible to write a explicit The relationship (D WW , U)HC 5 (WW , D * U)H S implies
formula for the components of the operator G. However, that
it is possible to express G in terms of M, S, and D. For
the nodal discretization, G can be expressed explicitly in [WW , D † M U]H S 5 [D WW , M U]HS . (4.14)
terms of M, N, and D.

The right-hand side of this formula can be evaluated using4.2.1. The Surface Discretization for Vectors
(4.5) for D and summation by parts to give

For the cell discretization of scalar functions and the
surface discretization for vectors, G is computed by finding
the adjoint of D : H S R HC, 2(D † M U)(i, j) 5 1Sj(i, j) (U(i, j) 2 U(i21, j))

Sh(i, j) (U(i, j) 2 U(i, j21))
D. (4.15)

(D WW , U)HC 5 (WW , D *U)H S , (4.7)
4.2.2. The Nodal Discretization for Vectors

which can be rewritten in terms of the formal inner prod-
In the case of the cell discretization of scalar functions

ucts as
and the nodal discretization of vectors, an argument similar
to that given in the previous section gives

[D WW , M U]HC 5 [WW , S D *U]H S . (4.8)

D † M 5 N D *, (4.16)
The formal adjoint D † of D is defined to be the adjoint
in the formal inner product, so which gives

[WW , D † M U]H S 5 [WW , S D * U]H S . (4.9) G 5 D * 5 N 21 D † M. (4.17)

This relationship must be true for all WW and U, so Note that the operator D here is not the same as in the
previous section. As before, the fluxes are given by

D † M 5 S D *, (4.10)
WW 5 G U 5 N 21 D † M U, (4.18)

which gives
where WW 5 (WX, WY). Applying the operator N to both
sides givesG 5 D * 5 S 21 D † M. (4.11)
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N WW 5 D † M U. (4.19)

To simplify the notation, introduce FW ,

N WW 5 FW 5 D † M U, (4.20)

where FW 5 (FX, FY). As before, the operator N is given
by a two by two block of operators, but in this case, the
blocks are diagonal, so N can be inverted explicitly by
solving the left-hand equation in (4.20). The explicit form
of this equations is

n11(i, j) WX(i, j) 1 n12(i, j) WY(i, j) 5 FX(i, j) ,
(4.21)

n12(i, j) WX(i, j) 1 n22(i, j) WY(i, j) 5 FY(i, j) ,

and the solution is

FIG. 6. The nine-cell stencil for the cell-node discretization for the
operator A.

WX(i, j) 5
FX(i, j) n22(i, j) 2 FY(i, j) n12(i, j)

n11(i, j) n22(i, j) 2 n122
(i, j)

,

(4.22)

WY(i, j) 5 2
FX(i, j) n12(i, j) 2FY(i, j) n11(i, j)

n11(i, j) n22(i, j) 2 n122
(i, j)

. VU 1 D WW 5 F, WW 5 G U. (4.26)

Then the discretization of the second-order equation (1.1),The relationship (D WW , U)HC 5 (WW, D * U)H N im-
which is an analog of the operator equation (2.8), isplies that

[WW , D † M U]H N 5 [D WW , M U]HC . (4.23) A U 5 (V 1 D G ) U 5 F. (4.27)

The right-hand side of the last formula can be evaluated For both discretizations, in the interior of the cells, Eq.
using formula (4.2) for D and summation by parts to give (4.27) is
an explicit formula for FW 5 D † M U

(D WW )(i, j) 5 DIV WW (i, j) 5 f(i, j) . (4.28)
2FX(i, j) 5 0.5 h(y(i, j11) 2 y(i11, j)) U(i, j) 1 (y(i21, j) 2 y(i, j11))

U(i21, j) 1 (y(i, j21) 2 y(i21, j)) U(i21, j21) (4.24) The approximation of the boundary conditions is
1 (y(i11, j) 2 y(i, j21)) U(i, j21)j.

(D WW )(i, j) 1 a(i, j) U(i, j) 5 c(i, j) , (4.29)
The formula for FY is given by changing y to 2x in the
previous formula. where, on the boundary, the operator D is an approxima-

tion of the normal component of the vector.
4.3. The Discrete Operator Equations Also, for both discretizations, the fluxes are deter-

mined fromFor both discretizations, the discrete analog of the con-
tinuum operator V (see (2.11)) is defined by

WW 5 G u. (4.30)

(V U)(i, j) 5 5 0, in the interior,

a(i, j)U(i, j) , on the boundary.
(4.25) For the cell-node discretization, the operator G can be

constructed from (4.22) and (4.24) and there are local ex-
plicit formulas for the fluxes (see Fig. 6). For the cell-
surface discretization, the operator G is non-local (see Sub-The finite difference method approximating the first-order

system (2.6), written as an analog of the continuum-opera- section 4.2.1) and, consequently, there is no local explicit
equation for the fluxes.tor system (2.13), is
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4.4. The Discrete Operators on a Rectangular Grid

On orthogonal grids and for diagonal K, the interior
discretizations discussed in this paper reduce to well-
known discretizations. In this section we consider the case
where K 5 kI on a rectangular grid with the cell sides
Sj(i, j) 5 hY and Sh(i, j) 5 hX and cell volume VC(i, j) 5 hX hY.

4.4.1. The Cell-Node Discretization
FIG. 7. The stencil of the Laplacian for (a) cell-node discretization,

rectangular grid, (b) cell-node discretization, square grid, (c) cell-surfaceFor the cell-node discretization, the DIV operator
discretization, rectangular grid.(4.2) is

(DIV WW )(i, j) 5 [0.5 (WX(i11, j) 1 WX(i11, j11)) Laplacian has a nontrivial null space that includes the
2 0.5 (WX(i, j) 1 WX(i, j11))]/hX

(4.31)
checker board mode.

1 [0.5 (WY(i11, j11) 1 WY(i, j11)) 4.4.2. The Cell-Surface Discretization
2 0.5 (WY(i11, j) 1 WY(i, j))]/hY , For the surface discretization of vectors, formula (4.5)

gives the operator DIV as
which is a natural discretization for a rectangular grid.

Fluxes WX(i, j) , WY(i, j) are given by
(DIV WW )(i, j) 5

WSj(i11, j) 2 WSj(i, j)

hX
(4.35)

W X(i, j) 5 k̃(i, j) h[0.5 (U(i, j) 1 U(i, j21))
1

WSh(i, j11) 2 WSh(i, j)

hY
,

2 0.5 (U(i21, j) 1 U(i21, j21))]/hXj.

(4.32)W Y(i, j) 5 k̃(i, j) h[0.5 (U(i, j) 1 U(i21, j) which is also a natural discretization for the rectangular
grid.

2 0.5 (U(i, j21) 1 (U(i21, j21))]/hXj.
The operator G is computed from formula (4.13), and

involves the operator S given by (3.30). For orthogonal
where the expression grids, S is diagonal (the sines of all angles are one and

the cosines of all angels are zero). Also, all V(p,q)
(i, j) are equal

to 0.25 hX hY. Using (4.15), Eq. (4.13) for internal cells be-
comesk̃(i, j) 5 S1

4 O1
k,l50

1
k(i2k, j2l)

D21

(4.33)

S0.5 hX hY O
k50,1

1
k(i2k, j)

DWSj(i, j) 5 hY (U(i, j) 2 U(i21, j))is the two-dimensional cell-to-node harmonic average, and
the expressions in curly braces are an approximation for

(4.36)the derivatives ­u/­x and ­u/­y.
The stencil for the discrete analog of the Laplacian div

orgrad is given by choosing K 5 I:

WSj(i, j) 5
2 k(i21, j) k(i, j)

k(i21, j) 1 k(i, j)

U(i, j) 2 U(i21, j)

hX
. (4.37)1

4 hX1 1
1

4 hY2

21
2 hX 2 1

1
2 hY 2

1
4 hX2 1

1
4 hY2

Thus, on rectangular grids, the cell-surface discretization1
2 hX2 1

21
2 hY2

21
hX 2 1

21
hY2

1
2 hX2 1

21
2 hY2 leads to the well-known harmonic average for the coeffi-

cient k in the j direction. The formula for WSh is similar,
1

4 hX2 1
1

4 hY2

21
2 hX 2 1

1
2 hY 2

1
4 hX2 1

1
4 hY2

WSh(i, j) 5
2 k(i, j21) k(i, j)

k(i, j21) 1 k(i, j)

U(i, j) 2 U(i, j21)

hY
, (4.38)

When the grid is square, the stencil becomes the five-point
stencil shown in Fig. 7. On a square grid, the cell-node and contains the harmonic average for k in the h direction.
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The fluxes on the boundary are one-sided differences. Conversely, assume that G U 5 0. Formula (4.41) and
the fact that operator S is positive definite givesFor example, on the left boundary

D † M U 5 0. (4.42)
WSj(1, j) 5 k(1, j)

U(1, j) 2 U(0, j)

0.5 hX
,

(4.39) This and formula (4.15) then give

WSh(i,1) 5 k(i,1)
U(i,1) 2 U(i,0)

0.5 hY
.

U(i, j) 2 U(i21, j) 5 0; i 5 1, ..., M; j 5 1, ..., N 2 1;

U(i, j) 2 U(i, j21) 5 0; i 5 1, ..., M 2 1; j 5 1, ..., N;The discrete analog of the Laplacian div grad is

which implies that U is a constant. Therefore the null space
of the discrete operator G is the constant functions, exactlyU(i11, j) 2 2 U(i, j) 1 U(i21, j)

hX 2

(4.40) as for the different operator k grad.

1
U(i, j11) 2 2 U(i, j) 1 U(i, j21)

hY 2 4.5.2. The Null Space of the Operator G, Cell-Node
Discretization

For the cell-node discretization, the situation is quitewhich is the usual five point approximation on a rectangu-
different: in the case of a square grid, Formula (4.24) showslar grid with the stencil shown in Fig. 7.
that both the constant function U(i, j) 5 1 and the ‘‘checker-
board’’ function U(i, j) 5 (21)i1j satisfy G U 5 0, as do any4.5. Theoretical Properties of the Algorithms
linear combinations of these functions. The checkerboard

For the cell-surface discretization, the properties for the solution or mode is well known, especially in computa-
operators div and grad were investigated in Shashkov and tional Lagrangian gas dynamics, where it leads to the so-
Steinberg [4], where it was shown that the divergence of called ‘‘hour-glassing’’ instability [13]. In case of elliptic
a constant vector is zero (moreover in [11] we proved that equations, this mode leads to the presence of high-fre-
DIV AW 5 0 if and only if vector AW can be presented as a quency noise in the solution, as illustrated by the numerical
discrete curl of another vector, AW 5 CURL BW ); that for examples in Section 5.
smooth grids the point truncation errors for the divergence
DIV and for the gradient GRAD are second order; and 4.6. Solving the System of Linear Equations
for general grids, DIV and GRAD are first-order accurate,

The discrete equations for both the cell-node and theand that the DIV is exact for the integral truncation error.
cell-surface discretization have the form (4.26):In [12] we proved, using a rather lengthy geometric calcula-

tion, that for piecewise constant K, the discrete analog of K
VU 1 D WW 5 F, WW 5 G U, (4.43)grad is exact on piecewise linear functions. In the following

subsection, it is shown that, for the cell-surface discretiza-
The fluxes can be eliminated from this system to obtaintion, the null space of G is exactly the constants, while for
an equation for U,nodal discretization on square grids, the null space of G

contains highly oscillatory checker board grid functions in
A U 5 VU 1 D G U 5 F, (4.44)addition to the constants.

In Section 5, the approximation properties of the vari-
where A is symmetric and positive definite.able-coefficient Laplacian div K grad are numerically

For the cell-node discretization, the operator A is sym-shown to confirm these theoretical results.
metric and positive definite, and has a local 9 cell stencil.
In our numerical examples to compare the accuracy of the4.5.1. The Null Space of the Operator G, Cell-Surface
methods, we used a simple SOR iteration to solve thisDiscretization
system. More efficient iteration methods, such as multigrid

For the cell-surface discretization, we prove that G U is [14–17] or incomplete Cholesky conjugate gradient meth-
zero if and only if U is constant. Formula (4.11) gives ods [18], could also have been used to solve these equa-

tions.
G U 5 S 21 D † M U, (4.41) For the case of cell-surface discretization, the operators

G and A are non-local and, therefore, algorithms that
require explicit expressions for A are impractical for largeand then, if U is a constant, (4.15) shows that D † M U 5

0, so G U 5 0. problems. The equations can be formulated so that algo-
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rithms, such as preconditioned conjugate gradient meth-
ods, requiring only a multiplication of a vector by A can
be used. Given U, A U can be computed efficiently by
solving (4.13), S WW 5 D † M U, for WW and evaluating
A U 5 VU 1 D WW . All operators in this formulation are
explicitly known and local. Moreover, because S is a posi-
tive definite symmetric local operator, the equation for
WW can be solved efficiently with iterative methods. On
orthogonal grids S is a diagonal operator, and all steps of
this procedure are local.

Other efficient algorithms to solve this system include
the family of two-level gradient methods, including the
minimal residual method, the minimal correction method,
and the minimal error method. All these methods can be
written as

B
U(s11) 2 U(s)

ts
1 A U(s) 5 F, (4.45)

FIG. 8. The stencil for WSj.

where U(s) is the approximate solution to Un11 on iteration
number s, ts some iteration parameter, and operator B is nal, systems (4.46) and (4.47) can be solved explicitly. Be-
the preconditioner. A family of three-level iteration meth- cause the operators for these equations are symmetric and
ods, which require only the computation of A U, includes positive definite, the block Gauss–Seidel method always
the three-level conjugate-direction methods, like the con- converges.
jugate gradient method. All these methods can be writ- Another approach to solving (4.13) is to use the fact
ten as that the operators S11 and S22 are diagonal, and then elimi-

nate either WSj or WSh from (4.46). For example, the
BU(s11) 5 as11 (B 2 ts11 A ) U(s) 1 (1 2 as11) BU(s21) equation resulting from eliminating WSh is

1 as11 ts11 F, (S11 1 S12S 21
22 S21) WSj 5 F X 2 S22 F Y. (4.48)

BU(1) 5 (B 2 t1 A ) U(0) 1 t1 F.
The operator of this system,

The effectiveness of these methods strongly depends on
(S11 1 S12S 21

22 S21), (4.49)the choice of a preconditioner. The simplest Jacobi type
preconditioner approximates S by its diagonal blocks. This

is symmetric and positive definite, and has the local stencilis exact for orthogonal grids and produces a five-cell sym-
shown in Fig. 8.metric positive-definite operator corresponding to remov-

ing the mixed derivatives from the variable-coefficient
5. NUMERICAL EXAMPLESLaplacian on non-orthogonal grids.

The examples in this section, summarized in Table I,4.6.1. Solving for the Fluxes
solve the elliptic PDE (1.1) and were chosen to illustrate

Given U, the system (4.13) must be solved to obtain the
flux. In our examples, we used the block Gauss–Seidel al-

TABLE Igorithm,
Summary of Examples

S11 WSj (s11) 1 S12 WSh(s) 5 F X , (4.46)
K K Grid

No. Name diag cont uniform
S21 WSj (s11) 1 S22 WSh(s11) 5 F Y, (4.47)

5.1 Crumption 1 no yes yes
5.2 Crumption 2 no no yeswhere (s) and (s 1 1) are iteration indices. Equation (4.46)
5.3 Durlofsky 1 yes no yesgives all WSj (s11) fluxes for the new iteration (s 1 1), and
5.4 Durlofsky 2 no no no

then from Eq. (4.47), all fluxes WSh(s11) can be found. 5.5 Das no no no
Because the matrix of the operators S11 and S22 are diago-
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TABLE IIhow the cell-node and cell-surface algorithms perform for
discontinuous non-diagonal K and on nonuniform grids. Example 5.1: Convergence Rates with Cell-Node and
Examples 1 and 2 are used to compare the convergence Cell-Surface Discretizations
rates of the algorithms for various kinds of coefficients and

Maxgrids. Example 3 shows that the algorithms can compute
Method M norm L2-norm qmax q2accurate total fluxes for very rough K. Example 4 confirms

that the algorithms produce reasonable results for the case Cell-node 17 3.74E-3 1.06E-3 1.84 2.03
of non-diagonal and discontinuous K and nonuniform 33 9.66E-4 2.58E-4 1.97 2.02

65 2.45E-4 6.36E-5 — —grids, while Example 5 verifies that for non-diagonal and
Cell-surface 17 5.11E-3 1.68E-3 1.92 2.01discontinuous K and non-uniform grids, but where the

33 1.35E-3 4.15E-4 1.95 2.09solution is piecewise linear, that the cell-surface algorithm
65 3.48E-4 9.73E-5 — —

is exact and the cell-node algorithm is second-order ac-
curate.

Some additional examples, and, in particular, compari-
son with method from [19] can be found in [4].

where U is the solution of the finite-difference method andThe asymptotic truncation error Eh on a grid of M 3
u is the exact solution.N nodes,

5.1. Non-diagonal Continuous K
h 5 maxH 1

M 2 1
,

1
N 2 1J, (5.1)

Problem 1, from Crumpton, Shaw, and Ware [17], has
a constant non-diagonal K, defined on the unit square with

is estimated by Dirichlet boundary conditions obtained from the exact so-
lution. The permeability is

iEhi 5 C h q 1 O(h q11), (5.2)

where q is the order of the error, and the constant C, the K 5 S2 1

1 2
D, (5.5)

convergence-rate constant, is independent of h, and i?i is
some norm.

In the numerical examples the truncation errors were where K is a positive definite matrix. The true solution is
evaluated on a sequence of grids h, h/2, h/4, ..., and the u 5 exy, which corresponds to this right-hand side
convergence rate q estimated from the ratio between the
norms of the errors iEhi and iEh/2i as

f (x, y) 5 22(1 1 x2 1 xy 1 y2)exy. (5.6)

q P log2
iEhi

iEh/2i
. (5.3) Convergence-rate data for the cell-node and cell-surface

discretizations are given in Table II, which indicates sec-
ond-order convergence rates for both methods, both inIn the numerical experiments, continuum functions are
max and L2 norms.discretized using the projection operator

(ph u)i, j 5 u(xc
i, j , yc

i, j), 5.2. Non-diagonal Discontinuous K

This test problem from Crumpton, Shaw, and Ware [17]where xc
i, j , yc

i, j are the coordinates of the geometric center
is defined on the square [21, 1] 3 [21, 1], with Dirichletof the cell.
boundary conditions. The diffusion coefficient is given byThe convergence rates were estimated using both the

maximum norm

K 5

S1 0

0 1
D, x , 0,

(5.7)

Emax 5 iU 2 ph uimax 5 max
i, j

uUi,j 2 (ph u)i, ju

and the mean-square norm aS2 1

1 2
D, x . 0,

EL2
5 iU 2 ph uiL2

5 SOM21

i51
ON21

j51
(Ui,j 2 (ph u)i, j)2 VCi, jD1/2

,

(5.4)

5
where the parameter a is used to vary the strength of the
discontinuity at x 5 0. The exact solution is
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convergence rate for the cell-surface algorithm and a first-
order convergence rate for the cell-node algorithm.

5.3. Flow through a Sand-Shale System

This example is from Durlofsky [20] and is defined on
the unit square, with the boundary conditions u 5 0 along
x 5 0, u 5 1 along x 5 1, and the flux is equal to zero
along y 5 0 and y 5 1. The permeability field is generated
by randomly placing shale blocks, of total area fraction
0.2, throughout the sand on a regular grid of dimension
20 3 20 (see Fig. 10). In the example, the permeabilities
of both the sand (ksand) and shale (kshale) are taken to be
uniform and isotropic, K 5 kI, with ksand 5 1 and kshale 5

FIG. 9. Example 5.2. The isolines for the pressure, M 5 N 5 17. 1026. The ‘‘exact’’ flux through the system (which is flux
obtained on a very fine grid) is 0.5202 (see [20]).

The streamlines for the case of the cell-surface discretiza-
u(x, y) tion, which were obtained from the vector field by comput-

ing the stream function and then drawing its isolines, are
shown in Fig. 10. Analysis of the isolines of the pressure5 5[2 sin(y) 1 cos(y)] ax 1 sin(y), x , 0,

exp(x) sin(y), x . 0.
(5.8)

also shows the more regular behavior of the pressure for
the case of the cell-surface discretization. The convergence
rates for the total flux are presented in Table IV. For

The right-hand side, which corresponds to this solution, N 5 M 5 21, the cell-node discretization gives an abso-
is also discontinuous: lutely unphysical result. This can be explained as follows:

the fluxes are computed at nodes, and the corresponding
f (x, y) elements of the matrix K are also computed at the nodes

by a harmonic average from four neighboring cells, so for
20 3 20 cells, all nodes have very small permeability, which5 5[22 sin(y) 2 cos(y)] ax 2 sin(y), x , 0,

2a exp(x) cos(y), x . 0.
(5.9)

almost blocks the system.
It is interesting to compare the accuracy of our cell-

surface discretization and the mixed finite-element
No special discretization is needed for the right-hand side method, described in Durlofsky [20], as a function of the
because our method uses a cell-centered discretization for number of unknowns. In [20], the total flux, which is ob-
u and the discrete analog of operator div K grad whose tained using 1240 unknowns, is 0.4508, while our method
domain and range coincide with HC. The right-hand side gives a flux of 0.451 for M 5 N 5 21 (the correct result is
is also assumed to be given in the cells and the material 0.5205). For a uniform grid used in this example, and for
discontinuity coincides with a grid line. a diagonal K matrix, as used in this example, the fluxes

Figure 9 displays the isolines for the approximate solu- can be eliminated from the system and then the resulting
tion for M 5 N 5 17, and a 5 1. Table III gives the system of linear equations contains only the pressure. That
convergence-rate data for both the cell-node and the cell- is, the number of unknowns, taking into account the Dirich-
surface discretizations. These data verify the second-order let boundary conditions on the left and right boundaries,

is equal to (M 2 1) 3 (N 1 1) 5 440. If the fluxes are not
eliminated, then the number of unknowns is equal to
(M 2 1) 3 (N 1 1) 1 M 3 (N 2 1) 1 (N 2 2) 3 (M 2TABLE III

Example 5.2: Convergence Rates with Cell-Node and 1) 5 1240, exactly as for the mixed finite-element method.
Cell-Surface Discretization Because of these differences, to compare the two methods,

it is not appropriate to compare only the number of un-
Max knowns, but the structure of the matrix and the solution

Method M norm L2-norm qmax q2 procedure for the system of linear equations must also
be considered.Cell-node 17 1.00E-2 7.98E-3 0.82 1.17

33 5.66E-3 3.53E-3 0.90 1.03
5.4. Flow through a System Containing an65 3.02E-3 1.72E-3 — —

Impermeable StreakCell-surface 17 9.63E-3 7.05E-3 1.89 2.02
33 2.59E-3 1.73E-3 1.96 2.12

This example, similar to one in Durlofsky [20], uses the65 6.72E-4 3.96E-4 — —
logically rectangular grid on the unit square shown Fig.
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FIG. 10. Example 5.3. Streamlines for the sand-shale problem, M 5 N 5 21 and M 5 N 5 41.

11a. The top curve is chosen to be an arc of a circle with where w 5 w(x, y) is the angle of rotation of the orthogonal
coordinate system where the tensor K is diagonal and hasthe center at (0.1, 20.4) and radius equal to 1.2. The bottom

curve an arc of a circle with the same center and with components ki and k' . In our case
radius equal to 1.1.

The permeability throughout the domain is uniform and sin w 5 2
x9

Ï((x9)2 1 (y9)2)
,

(5.13)
isotropic (K 5 I), except in the low-permeability streak
where the permeability is set such that the component

cos w 5
y9

Ï((x9)2 1 (y9)2)
,parallel to the local streak orientation (ki) is equal to 0.1

and the component perpendicular to the streak orientation
(k') is equal to 0.001. In the streak, the tensor K is a full where x9 5 x 2 0.1 and y9 5 y 1 0.4.
tensor, in terms of its Cartesian components, which vary Figure 11b displays the velocity field for the case of the
with (x, y) and are readily determined from the knowledge cell-node discretization (the length of arrows is propor-
of ki and k' . For the Cartesian components Kxx , Kxy , Kyy , tional to the module of the vectors). The results of the
which are used in cell-node discretization, the transforma- cell-surface discretization will be similar. As expected
tion formulas are physically, no flow enters the streak, so these results are

qualitatively similar to the best results in Durlofsky [20].
Kxx 5 ki cos2 w 1 k' sin2 w, (5.10)

5.5. Non-diagonal, Piecewise Continuous K
Kxy 5 (ki 2 k') cos w sin w, (5.11)

In this example from Das, Schaffer, Steinberg, and
Kyy 5 ki sin2 w 1 k' cos2 w, (5.12) Weber [21], the region is the unit square, the boundary

conditions are the normal flux given by the exact solution
on the top and the bottom boundaries, and the Dirichlet

TABLE IV
condition is given by the exact solution on the left and right
boundaries. The non-diagonal permeability (or diffusion)
matrix has a jump discontinuity of height l along the lineExample 5.3: Convergence Rates for Flux with Cell-Node and
r x 1 sy 5 d, where 0 # r, s, d # 1 and r 1 s 5 1 (seeCell-Surface Discretization
Fig. 12a). The matrix K is

Approx. Exact
Method M flux flux Error q

K 5 k(x, y) S 1 1/10

1/10 1
D, (5.14)

Cell-node 21 0.022 0.5205 0.498 1.39
41 0.33 0.5205 0.190 1.07

where81 0.43 0.5205 0.090 —
Cell-surface 21 0.45 0.5205 0.070 1.22

41 0.49 0.5205 0.030 1.32
81 0.508 0.5205 0.012 — k(x, y) 5 H1, if 0 # r x 1 sy , d,

l, if d # r x 1 sy , 1.
(5.15)
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FIG. 11. Example 5.4. (a) The geometry and the grid for the streak, (b) velocity field for cell-node discretization.

The exact solution for the case when the right-hand side Figure 12b displays the approximate solution for r 5 0.7
and l 5 10, for the cell-node discretization. Table V verifiesequals zero is
that the convergence rates are second-order.

u(x, y)
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